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Keywords

This project lies at the interface between mathematics and theoretical physics. It is a melting pot
of algebra, representation theory, functional analysis and statistical mechanics, aiming at studying
the mathematical structures present in the exactly solvable (“integrable”) models of statistical
mechanics, with potential applications to problems in classical or quantum many-body physics.

Scientific context

Exactly solvable models play an essential role in our understanding of the emergence of macroscopic
laws from microscopic ones, for instance in the study of phase transitions. Those are models where
certain physical quantities can be computed analytically in the thermodynamic limit, whereas
numerical approaches typically face severe difficulties due to the large number of constituents.
Applications include, to name a few: classical magnetism [1], two-dimensional geometrical models
such as percolation [3] or loop models [4], stochastic models [5] or one-dimensional quantum systems
[6] (in the two latter cases, time plays the role of the extra dimension, such that these can generally
be related to two-dimensional statistical mechanical models at equilibrium).

The two seminal works in the field of exactly solvable models are Bethe’s diagonalization of the
Heisenberg spin chain, a one-dimensional model of interacting quantum magnets (1931) [2], and
Onsager’s solution of the two-dimensional Ising model (1944) [1], a typical configuration of which
is shown on the left panel of Fig. 1. Bethe’s work later gave rise to a beautiful field of research
known as quantum integrability, deeply rooted in algebraic structures such as the Yang-Baxter
equation and quantum groups. The Yang-Baxter equation is a consistency relation satisfied by the
local statistical weights of a model, and can be viewed as the primary ingredient for commuting
transfer matrices and exact solvability. Quantum groups (typically denoted Uq(g), where g is a
simple finite-dimensional Lie algebra and q a deformation parameter), in turn, are quasitriangular
Hopf algebras which provide the mathematical framework for the Yang-Baxter equation. Another
deeply related object is the Temperley-Lieb algebra (see right panel of Fig. 1).
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Figure 1: Left: Two-dimensional Ising model at its critical point. Middle: random configuration of two-
dimensional fully packed loops. Right: Graphical depiction of the Temperley-Lieb algebra, which encodes
the configurations of the two-dimensional loop model into algebraic rules obeyed by generators {ei}.

The techniques of quantum integrability have allowed for exact solutions in a variety of problems
in two-dimensional statistical mechanics as well as for 1+1-dimensional quantum systems. Notably,
however, most exact solutions so far have remained limited to low-dimensional systems, a fact which
can be interpreted as a consequence of the “rigidity” of the algebraic objects at play. There have
been attempts to promote the Yang-Baxter equation to a three-dimensional tetrahedron equation
[7], however all solutions of the latter found this far fail to relate to genuine three-dimensional
physical models.

Overview of the project

The objective of this project is to revisit the algebraic structures of integrable models under a
different light, which could provide another route towards an extension to higher dimension, in
addition to bringing new insight for low-dimensional problems.

Our starting point will be the study of integrable models at the special points where the quantum
group deformation parameter q is a root of unity. On the one hand those cover many of the
physically relevant cases (Ising model, critical Potts models [10], percolation [11], restricted solid-
on-solid models [9], dilute or dense polymers [12, 13], etc...). On the other hand, at such points
the underlying algebraic structures are considerably enriched [14]: while the representation theory
of a quantum group Uq(g) at generic q essentially reproduces that of the universal enveloping
algebra U(g) (in particular all finite-dimensional representations become decomposable), at root of
unity even finite-dimensional representations admit non-trivial extensions, and the representation
theory of Uq(g) reminds the one of simple Lie groups at positive characteristic [8]. This comes with
important physical consequences, ranging from the relation with Logarithmic Conformal Field
Theory [15] to the relaxation properties of many-body quantum systems [16].

In a relatively recent work [17], one of the advisors (EV) has shown how at such root of unity
points, traditional integrable models show a surprising connection with the Onsager algebra, an
infinite-dimensional Lie algebra which played a crucial role in Onsager’s historical solution of the
Ising model but has since then remained quite remote from the whole development of quantum
integrability. In this project we plan to explore further the different aspects of this connection, in
particular:

� translate the Onsager algebra into quadratic relations between transfer matrices, which can
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prove a powerfool tool towards exact solvability.

� explore the case with open boundaries, where a past study by the other advisor (AG) has
evidenced the appearance of yet another infinite-dimensional algebra, cousin to the Onsager
algebra but which remains to be explored for the most part [18]

Depending on the taste of the candidate, we may also explore applications to quantum many-
body systems. There, the Onsager algebra or its variants shows up at root of unity as a non-
abelian symmetry algebra, which puts important constraints on the physics, for instance the non-
equilibrium relaxation properties: while it is accepted that physical systems relax to equilibrium
by maximizing their entropy under constraints fixed by their conservation laws, what happens
when the conserved quantities do not commute with one another? Some aspects were studied in
[19, 20], but many interesting facets remain to explore. In this respect, characterizing non-abelian
symmetries algebra in terms of transfer matrix relations as mentioned above may prove a very
useful tool to construct non abelian Generalized Gibbs Ensembles.

We will then step up to the three-dimensional case, where our hope is that some of the aspects
described above may be carried over more naturally than the other algebraic structures traditionally
attached to integrability. In particular, an interesting aspect of the work [17] is that the Onsager
algebra was shown to emerge from two very simple conditions, namely, some U(1) conservation law
(number of particles conservation) together with self-duality. More precisely, a pair of generators A0

and A1, corresponding respectively to the “particle number” and its dual, were very naturally shown
to obey a set of relations known as Dolan Grady [21], which in turn guarantees that they should
generate a representation of the Onsager algebra under iterated commutations. Our strategy will
therefore be to seek a three-dimensional analog of this construction: can we construct simple models
with some elementary conserved quantity A0 and invariance under some duality transformation D?
What algebraic relations do A0 and D(A0) obey? What is the algebra encoded in those relations?

A complementary direction we may follow regards the extension in three dimensions of two-
dimensional geometrical lattice models such as loop models (see Fig. 1), and more generally the
web models developped by one of the advisors (AG) in recent works [22]. While loop models
are widely studied both in relation with integrability, algebra (with a prominent role played by
the Temperley-Lieb algebra, see right panel of Fig. 1), conformal field theory and probability
theory, web models are very much less so. These generalize the former by allowing bifurcation and
branching (algebraically, their construction in 2D relies on objects known as spiders [23]) and are
expected to play a role in the description of interfaces in spin models where the spins can take more
than two values. In order to step up to three dimensions, we need define a statistical model of 3D
cobordisms between spider configurations (also known as foams [24]) which at every generic time
slice yields a configuration of the 2D web (or loop) model. On the algebraic side, these cobordisms
are central tools in the construction of Khovanov homology, a knot homology theory that upgrades
the Jones polynomial. This construction was introduced by Khovanov in the early 2000’s [25], and
has since been at the center of intensive research and extensions [26].

The work will involve both analytical and numerical parts. The candidate should have a back-
ground in mathematics and/or theoretical physics, and depending on their taste and the work’s
advancement, we may lean more towards one or the other discipline along the flow of the project.
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